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Abstract: Heavy metal contamination is a severe environmental problem affecting global 

food production and safety. Heavy metal stress due to its toxicity, bioaccumulation, and non-

biodegradability, it become quite serious in nature. The available strategies for preventing 

heavy metal contamination are not frequently used because of their inefficient and time- or 

money-consuming properties. Recent developments in nanotechnology have been made 

based on ameliorative strategies which have a potential alternative to physic-chemical 

methods. Under heavy metal stress, the application of calcium oxide nanoparticles (CaO-

NPs) significantly boosts plant biomass, anti-oxidative enzyme activities (such as catalase 

(CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and glutathione reductase 

(GR)), and the level of non-enzymatic antioxidants (ascorbate and glutathione). Additionally, 

CaO-NPs enhance the gene expression linked to anti-oxidative enzymes. It can be suggested 

that CaO-NPs could be used as a potential chemical to reduce heavy metal uptake and 

toxicity in the plants grown under heavy metal contaminated soil. This review provides an 

overview of plant-CaO-NPs research in increasing heavy metal stress tolerance in plants. 
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1. Introduction 

Globally, abiotic stresses such as drought, salt, extremely high temperatures, and heavy metal 

stress are reducing crop productivity. Furthermore, extreme and/or prolonged abiotic stresses 

have the potential to cause the death of individual cells and perhaps the entire plant, as well 

as completely jeopardizing the yield (He et al., 2018; You and Chan, 2015; Choudhury et al., 

2013). Reactive oxygen species (ROS) induced by abiotic stresses cause programmed cell 

death in various plant species (Petrov et al., 2015). The regulation of growth, developmental 

processes, and stress adaptation are all influenced by ROS (Mhamdi and Van, 2018; Mittler 

et al., 2011; Gechev et al., 2006). Abiotic stresses cause plant damage, cell death, and growth 

of plants, which have significant negative impact on food yields globally. Abiotic stresses at 

extreme level also leads to oxidative stress. 

Moreover, heavy metal (HM) contamination is frequently found in food and blood, it has 

recently gained public attention. HM stress has an impact on plant growth and, indirectly on 

human health through the food chain (Wang et al., 2019). One of the main elements limiting 

crop output and jeopardizing food security is HM pollution(Ogden et al., 2020; Dong et al., 

2020). In order to limit crop production, HM primarily affects normal structure of cell, the 

antioxidant system, as well as plant growth. More significantly, it is predicted that by 2030 

and 2050, the world's population would have increased to 8.54 billion and 9.73 billion, 

respectively, necessitating a 70–100% increase in present food production (Li et al., 2020; 

Guo et al., 2019). Therefore, HM removal/immobilization technology needs to be improved 

in polluted fields. 

Since the last few years, nanotechnology has emerged as an extremely powerful discipline 

that is revolutionizing a wide range of fields such as medicine, agriculture, industrial, 

environmental, and electronics. Nanotechnology is a new discipline of science that deals with 

nanoparticles and how they are synthesized (Ziauddin et al., 2014). As a means to overcome 

nutritional poverty and food scarcity, nanotechnology is emerging as a tool for agriculture. 

NPs typically refer to substances that have at least one dimension less than 100 nm. 

According to the requirements, NPs with various particle sizes, geometries, and 

functionalities can be produced (Adeel et al., 2020). NPs have a number of benefits over 
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conventional materials, including high surface activity, an increased number of surface 

reaction sites, strong catalytic efficiency, and special optical and magnetic properties (Wang 

et al., 2019; Yang et al., 2018; Yang et al., 2017). NPs are also used as nanofertilizers (Rui et 

al., 2016; Rui et al., 2018; Li et al., 2020) and nanopesticides (Adeel et al., 2021; Hao et al., 

2019; Zhao et al., 2018; Hao et al., 2018), which have the advantage of being easily absorbed 

by plants and slowly released in the environment compared to traditional fertilizers (Lowry et 

al., 2019). Therefore, through nanotechnology, we can improve crop productivity, minimize 

losses and enhance yields in the future, enabling sustainability, crop productivity, and 

overcoming abiotic stresses (Tariq et al., 2020). NPs (such as CaO NPs, CeO2, and TiO2 

NPs) can boost antioxidant enzyme activity, which can lower the increased level of reactive 

oxygen species (ROS) in plants, reducing plant stress and thus, enhance quality and 

production of plants (Nazir et al., 2022a, b; Wang et al., 2020; Usman et al., 2020). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Role of nanotechnology in Agriculture 

Calcium (Ca) is crucial for the development of plant tissues and for the improvement of plant 

growth. The calcium in plants helps to hold plants cell walls together. Additionally, it is 

essential in activating various enzymes to coordinate with several cellular activities. It is also 
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essential for the regulation of growth of the root system, and also enhance defense against 

outside attack, as well as increase the value of forage crops as feed for cattle (White and 

Broadley, 2003). Calcium oxide nanoparticles, have an advantageous impact on plant growth, 

plant biomass, anti-oxidative enzyme activities (such as APX, GR), and the content of non-

enzymatic antioxidants (such as ascorbate and glutathione), along with a considerable 

decrease in the levels of malondialdehyde (MDA) and hydrogen peroxide. It also has various 

essential properties such as adsorption, antibacterial properties, catalysis, and absorption 

(Gandhi et al., 2021). However, due to their superior efficacy in eliminating heavy metals, 

micronutrient-based nano-fertilizers have recently attracted a lot of interest in the agriculture 

sector (Nazir et al., 2022b). It is widely known that micronutrient-based NPs, such as calcium 

oxide NPs, promote seed germination and plant growth by triggering oxidative defense 

mechanisms and preserving ionic homeostasis. Furthermore, due to their distinct qualities and 

eco-safe characteristics, calcium oxide (CaO) nanoparticles are increasingly being used as a 

method of choice for environmental remediation. According to Davarpanah et al. (2018), 

CaO NPs have a positive effect on plants. Recently, Nazir et al. (2022a, b) also demonstrated 

the positive role of CaO-NPs in alleviating heavy metal toxicity in plants. 

In this review, we focus on the new strategies and different responses seen in plants under 

HMs stress along with the positive role of calcium oxide nanoparticles in enhancing heavy 

metal stress tolerance in plants. 

 

2. Plant responses to heavy metal stress  

Heavy metal stress is increasing throughout the world due to anthropogenic, technological, 

and geogenic activities. Reactive oxygen species, which obstruct the majority of cellular 

functions at different levels of metabolism, are produced as a result of HMs exposure, and 

these ROS may cause a variety of harmful effects in plants. Due to their extreme instability, 

ROS have the potential to damage cellular components as well as serve as an essential 

secondary messenger for activating the plant defense system. To prevent this harm, cells have 

both enzymatic and non-enzymatic defense mechanisms. Some are constitutive, whereas 

others are only engaged in response to a perceived stress-related signal. Further, SOD, CAT, 
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and GR are enzymatic scavengers of ROS, whereas anthocyanins, glutathione, ascorbic acid, 

carotenoids, -tocopherol, organic acids and flavonoids are non-enzymatic antioxidants. 

Organic acids like citric, malic, and oxalic acid, among others, are linked to the intracellular 

and extracellular chelation processes of HMs. Metal complexation with glutathione, amino 

acids, the production of phytochelatins, and sequestration in vacuoles are all crucial 

components of the detoxification process. Excessive stress results in a cascade, the MAPK 

(mitogen-activated protein kinase) pathway, and the production of ligands that detoxify 

metals (Sytar et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Heavy metal (HMs) stress induced toxicity in plants 

 

2.1 Heavy metal uptake in plants 

Due to the sessile nature of plants, they are unable to migrate from one location to another to 

escape from various environmental stresses that may affect their productivity, growth, or 

development due to changes in the innermost concentrations of bio-reactive metals 

(Chatterjee et al., 2011; Schützendübel and Polle, 2002). Further, plants absorb various 
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micronutrients from the surrounding terrestrial or aquatic environments through their root 

systems, including zinc (Zn), iron (Fe), copper (Cu), and other elements. These sources might 

also contain low to high concentrations of non-essential elements like lead (Pb), cadmium 

(Cd), mercury (Hg) and arsenic (As). In order to combat heavy metal toxicity, plants use a 

variety of strategies, such as compartmentalizing the metal ions, immobilizing them, 

excluding them, and chelating them (Cobbett, 2000). 

Various plants have extraordinary capability to survive in toxic environments in heavy metal-

contaminated areas and have also been proven to acquire a significant amount of such metals 

within their biomass (hyperaccumulators). For instance, various reports demonstrated that 

naturally occurring hyperaccumulators, viz., the nickel hyperaccumulating species Thlaspi 

caerulescens (Freeman et al., 2004), and the arsenic hyperaccumulating fern species Pteris 

vittata (Gumaelius et al., 2004), may tolerate high levels of metal accumulation without 

suffering serious harm to their internal organs. Plants are the only organisms that can 

physically transfer nutrients like Ca, Mg, Co, and Mn. Moreover, through occupying 

transmembrane nutrient transporters, cadmium competes with these necessary nutrients 

during transportation (Papoyan and Kochian, 2004; Curie et al., 2000;  Thomine et al., 2000; 

Clemens et al., 1998). Cadmium enters into the roots via cortical tissue and also presumably 

accumulated in the roots. However, it travels to the xylem via a symplastic and/or apoplastic 

pathway, for further transport to shoots, and may be complexed by a number of ligands 

including organic acids and/or phytochelatins (PCs) (Salt et al., 1995; Cataldo and Wildung, 

1983). When Cd enters the root, it damages cells, particularly nucleoli, and impairs a number 

of enzymatic reactions like nitrate reductase (NR) and ribonuclease activity (Hernandez et al., 

1997; Shah and Dubey, 1995). Cadmium damages the light harvesting complex II, & 

photosystems I and II, and increases non-photochemical quenching, which has an impact on 

photosynthesis which leads to Fe(II) deficiency in plant shoot tissues (Larsson et al., 1998; 

Alcantara et al., 1994; Siedlecka and Krupa, 1996; Krupa, 1988). Even at low concentrations, 

heavy metals are harmful to plant cells and does not appear to have any biologically 

beneficial effects. For example, according to various reports, most plants are poisoned by Cd 

concentrations of 5 to 10 mg per gram of dry leaf mass (Lux et al., 2011; White and Brown, 
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2010). There are reports, though, that some genera of plants' ecotype roots spread widely in 

Cd-enriched soils (Liu et al., 2010). 

Additionally, these plants have a protective mechanism that limits Cd entrance to the xylem 

and inhibits metal accumulation in shoot tissues, particularly through the formation of Cd-

chelators at the root zone (Lux et al., 2011). It is indicated that the cells are exposed to 

different metals and metalloids including Cu
2+

, As
2+

, and Ag
+ 

can also synthesize chelators 

like PC (Tennstedt et al., 2009; Inouhe, 2005; Cobbet, 2000; Gekeler et al., 1989). Cadmium 

content in plant shoots vary greatly in nature, for which phylogenetic diversity and 

environmental factors are responsible (Watanabe et al., 2007). Moreover, caryophyllales and 

lamiales plants acquire Cd at substantially higher rates in shoots than other species (Broadley 

et al., 2001). However, Cd concentrations are often lower in seeds, fruits, and tubers and 

higher in roots than in shoots, indicating that most plants have limited ability to transfer Cd to 

the xylem and phloem (Lux et al., 2011; Conn and Gilliham, 2010; Seregin and 

Kozhevnikova, 2008). The most crucial aspect of a plant's strategy is the selection and 

optimal uptake of heavy metals, which are necessary for growth, and rejection of those 

elements that are not beneficial (Perales-Vela et al., 2006; Cobbett and Goldsbrough, 2002). 

Heavy metal stress in plants involves a complex system of signal transduction, which is a 

two-step process, where the activation process starts by sensing the heavy metals. Reduced 

availability of essential nutrients will reduce plant's vigor and ability to withstand heavy 

metal stress (Huang et al., 2008). Once the plant detects the presence of metals, proteins and 

stress-related signaling molecules, then it results in the explicit activation of metal-responsive 

genes to combat the toxicity induced by heavy metal stress (Maksymiec, 2007). 

Consequently, the development of metal-specific legands (chelation) and subsequent 

compartmentalization of the ligand-metal complexes in the cells can be the typical defense 

mechanisms for heavy metal detoxification in plants and other organisms (Cobbett, 2000). 

 

2.2 Heavy metal detoxification mechanism in plants 

Further, once a heavy metal enters the plant cell, mechanisms for its sequestration into the 

vacuole are activated so that it can be taken out of the active cellular compartments and the 



 

 

Gajanand Modi et al, International Journal of Advances in Agricultural Science & Technology, 
  Vol.10 Issue.1, January-2023, pg. 28-45 

ISSN: 2348-1358 
Impact Factor: 6.901 

NAAS Rating: 3.77 
 

© 2023, IJAAST All Rights Reserved, https://ijaast.com/                                               35 

cytosol, where sensitive metabolic processes occur (Hossain et al., 2012; Dalcorso et al., 

2010). As a result, a major vacuole in plant cells appears to be a reliable location for 

accumulating heavy metals. According to various reports, the vacuolar proton pumps, 

particularly the vacuolar proton ATPase (V-ATPase) and the vacuolar proton 

pyrophosphatase (V-PPase), aid in the vacuolar uptake of the majority of solutes. A few well-

known heavy metal transporter proteins include the iron-regulated transporter (IRT)-like 

protein ZIP family, ATP-binding cassette (ABC) transporters, P-type metal ATPases, 

mitochondrial ABC transporters (ATM), copper transporter (COPT) family members, 

multidrug resistance-associated proteins (MRP), and cation diffusion facilitator (CDF). 

Isolation of vacuole or its compartmental flux studies on HMs accumulation, specifically on 

Cd-exposed tobacco seedlings (Nicotiana rustica var Pavonii), revealed vacuoles that held 

nearly all of the Cd-binding peptides and Cd observed in protoplasts (Huang et al., 2012; 

Vögeli-Lange and Wagner, 1990). In plants, PC-metal complex is sequestered at the vacuole. 

Phytochelatins, particularly in response to heavy metals viz., cadmium and arsenic, involve 

the accumulation of metal-complexes in the vacuole by producing high molecular weight 

(HMW) compound after incorporation of sulfur (S2-) (Salt et al., 1998). PC-Cd complexes 

are transported into the vacuole through ATP-dependent ABC transporters and Cd/ H+ 

antiporters in the tonoplast (Salt and Rauser, 1995; Salt and Wagner, 1993).  

Moreover, Ortiz et al. (1992) discovered that a Cd-sensitive mutant of Schizo-saccharomyces 

pombe can synthesize PCs but not accumulate the Cd-PC-sulfide complexes. Another 

significant action of PCs is the movement of Cd from root to shoot. When wheat gene 

TaPCS1 was expressed in transgenic Arabidopsis, it improved the effectiveness of Cd 

transport from the root to the shoot (Gong et al., 2003). PCs chelate Cd
2+

 more efficiently 

than glutathione (GSH) molecules, and PCs and GSH complexes may both be reabsorbed into 

vacuoles (Huang et al., 2012; Pal and Rai, 2010; Li et al., 1996; Howden et al., 1995; Kneer 

and Zenk, 1992). Research on Cd-sensitive S. pombe mutants has provided the most 

convincing evidence of this pathway. Ortiz et al. (1992, 1995) first demonstrate hmt1, is a 

Cd
2+-

sensitive mutant of S. pombe that prevents the accumulation of vacuolar PC-Cd. HMT1 

is an ATP-binding cassette (ABC) transporter that can detect PCs and PC-Cd. Similar to this, 
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YCF1, a full-molecule ABC transporter that aids in the sequestration of a GS2-Cd complex 

into vacuoles, was found in a Cd
2+ 

sensitive mutant of Saccharomyces cerevisiae (Huang et 

al., 2012; Li et al., 1996, 1997). Further, in overexpressed S. pombe mutants that lack PCs for 

substrate, Preveral et al. (2009) described the role of SpHMT1 for the transport of GS2-Cd 

conjugates. 

Higher plants recently revealed two ABCC subfamily members of ABC transporters, which 

enhances vacuolar PC-As (III) trafficking (Song et al., 2010). Again, a significant decrease in 

vacuolar Cd
2+

 was seen in the atABCC1 atABCC2 mutant, indicating that AtABCC1 and 

AtABCC2 are important for vacuolar Cd
2+

 sequestration (Huang et al., 2012; Park et al., 

2012). Moreover, PC-deficient mutant cad1-3 has showed no influence on this process, 

indicating the SpHMT1 function that needs PCs. Ectopically produced SpHMT1 in 

Arabidopsis has demonstrated that PCs play a fundamental role in vacuolar Cd
2+

 

sequestration (Huang et al., 2012). 

 

2.2.1 Metal binding ligand’s essential role in plants 

The optimal concentration of essential bio-metals is maintained in plants by metal-binding 

ligands, which also lower the toxicity thresholds for non-essential metals. There are now 

known metal-binding ligands that enable plants to survive under harsh conditions (Callahan 

et al., 2006; Rauser, 1999). For instance, malate & citrate, which aid in the extracellular 

chelation of aluminum (Al), are known to be connected with tolerance to Al in plants and are 

also visible in Al-resistant mutants of Arabidopsis (Delhaize and Ryan, 1995). Additionally, 

amino acids like histidine (His) support the chelation of metal ions in cells and xylem sap 

(Rauser, 1999). The most prevalent peptide ligands are phytochelatins (PCs) and 

metallothioneins (MTs). These cysteine-rich polypeptides offer thiols to bind various metal 

types, aiding in cellular metal homeostasis and detoxification (Inouhe et al., 2012; Cobett, 

2000; Rauser, 1995). To counteract the harmful effects of non-essential heavy metals like As 

(arsenic) or Cd (cadmium), however, PC production is likely one of the most complex 

enzyme-catalyzed defense mechanisms known to protect plants (Rea, 2012). 

 



 

 

Gajanand Modi et al, International Journal of Advances in Agricultural Science & Technology, 
  Vol.10 Issue.1, January-2023, pg. 28-45 

ISSN: 2348-1358 
Impact Factor: 6.901 

NAAS Rating: 3.77 
 

© 2023, IJAAST All Rights Reserved, https://ijaast.com/                                               37 

2.2.2 Phytochelatins (PCs) role in oxidative stress induced by heavy metals and its 

detoxification mechanism 

Plants respond to HMs stress by chelation and subsequent ion sequestration mechanisms. 

Phytochelatins are thought to be a part of the mechanism in higher plants that detoxifies 

heavy metals because immobilized metals are less toxic than free ions (Cobbett and 

Goldsbrough, 2002). Such metal-binding peptides appearing in plants may be significant 

biochemical indication of heavy metal contamination under several environmental conditions 

(Gupta et al., 2002a, b). According to various reports, plants may detoxify a variety of metal 

ions, including Cd, As, Hg, Cu, Zn, Ag, & Ni, by forming PC-metal complexes (Manara, 

2012; Ha et al., 1999; Mehra et al., 1996; Rauser, 1999; Maitani et al., 1996). With isolated 

cad1 mutants, the stress response of plants was examined for various heavy metals with 

regard to the function of phytochelatins. The cad1-3 mutant of A. thaliana was shown to be 

more sensitive to Cd and arsenate than wild-type plants (Ha et al., 1999). Using the PCs 

(PCS-deficient) mutant of cad1-3, S. pombe was found to be only moderately sensitive to Cu 

and Hg, and intermediately sensitive to Ag (Manara, 2012; Ha et al., 1999; Maitani et al., 

1996). Several investigations show that Cu activates PC production both in vivo and in vitro. 

Mutants lacking PC exhibited relatively reduced Cu sensitivity. Salt et al. (1989), illustrated 

that the copper-tolerant plant Mimulus guttatus, corroborated the function of PCs in Cu 

tolerance. In contrast, both the Cu-tolerant and Cu-sensitive ecotypes of Silene vulgaris 

produced roughly the same amount of PCs when the root tips were exposed to Cu. It is also 

known that PC-Cu complexes are comparatively fleeting and poorly sequestered to the 

vacuole. This phenomena suggests a varied level of tolerance, which could be brought on by 

different mechanisms (Cobbett and Goldsbrough, 2002; De Knecht et al., 1994; Schat and 

Kalff, 1992). Another study using the plant Rubia tinctorum discovered that when roots are 

exposed to certain heavy metals, PC-metal complexes are produced. Although PC complexes 

with Cd, Ag, and Cu ions were found in vivo, and Ag, Cd, Hg, As & Pb ions proved to be the 

most effective at inducing PCs (Cobbett and Goldsbrough, 2002; Maitani et al., 1996). It was 

discovered that the PC complexes produced by Pb and arsenate include Cu ions rather than 

the metal ion needed to initiate synthesis. However, this may indicate that some metal has 
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been exchanged in complexes with PCs (Cobbett and Goldsbrough, 2002). Despite this, there 

are a lot of evidence that suggests PCs play a significant part in how plants react to various 

heavy metals and detoxify them. In addition to the well-known functions of PCs in the cell, 

such as the homeostasis of metals, antioxidant properties, and sulfur metabolism (Cobbett, 

2000; Dietz et al., 1999), PCs are also in charge of the development of heavy metal 

hypersensitivity. According to reports, high PC levels in transgenic plants encourage the plant 

to accumulate more heavy metals without increasing tolerance or developing a 

hypersensitivity to heavy metals (Manara, 2012; Pomponi et al., 2006; Lee et al., 2003). 

 

3. Role of calcium oxide nanoparticles (CaO-NPs) in the enhancement of heavy 

metal (HMs) stress tolerance in plants 

In plants, calcium is crucial for growth, photosynthesis, reducing stress, and mediating 

hormonal responses (Knight et al., 2010; Liang et al., 2009; Brand and Becker, 1984). It also 

plays a key role in a variety of physiological and biochemical activities in plants (Shi et al., 

2002). Nanotechnology is a very fascinating area of science and technology that may lead to 

new uses in agriculture and biotechnology (Siddiqui and Al-Whaibi, 2014). Nanoparticles 

can enhance plant metabolism and exhibit a variety of physicochemical properties (Giraldo et 

al., 2014). In order to improve the biological roles of various species, metal oxide 

nanoparticles are a better resource than metal oxide salts (Kadar et al., 2012; Johnston et al., 

2010). There is very little research available on the essential role of calcium oxide 

nanoparticles (CaO-NPs) in the literature in alleviating heavy metal stress in plants. 

Nazir and his co-workers, (2022a) investigated the positive role of CaO-NPs in alleviating 

arsenic stress induced toxicity from the two genotypes of barley (LJZ and Pu-9). They 

illustrated that the exogenous application of calcium oxide nanoparticles reduce the toxic 

effect of As stress and enhance plant growth, chlorophyll and calcium content as well as 

lower the ROS (reactive oxygen species) production and MDA (malondialdehyde) level in 

both barley genotypes. In the preceding year itself another study was reported by Nazir et al. 

(2022b) regarding the exogenous application of calcium oxide nanoparticles in alleviating 

cadmium (Cd) induced oxidative stress from barley seedlings. As a result, they revealed that 
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CaO-NPs when applied exogenously increase photosynthetic rate, antioxidant enzyme 

activity [(superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and 

ascorbate peroxidase (APX)], plant biomass and as well as the level of non-enzymatic 

antioxidants (glutathione and ascorbate) which leads to the reduction of H2O2 (hydrogen 

peroxide) and MDA level in barley seedlings. In the same year Khalaf and his colleagues, 

demonstrated the role of calcium oxide nanoparticles in Lupinus termis plants grown under 

cadmium stress which resulted in the enhancement of antioxidant enzymatic [(CAT) and 

peroxidase (POD)] activity and enhance Cd stress tolerance along with the decrease in total 

soluble carbohydrate content in Lupinus plants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Schematic representation of calcium oxide nanoparticles (CaO-NPs) and heavy 

metal (HMs) interaction to alleviate heavy metal stress in plant. 
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Table 1: Role of calcium oxide nanoparticles to alleviate heavy metal induced oxidative stress in plants 

S.No Plant 

name 

CaO-NPs 

concentration 

Type of 

abiotic 

stress 

Abiotic stress 

concentration 

Method of 

application 

Experimental 

setup 

Effects of CaO-NPs References 

1. Hordeum 

vulgare 

L. 

25 mg/l Arsenic 

(As) 

0, 25, 50, 100, 

150 µM 

CaO NPs 

directly added 

in soil 

Pot culture Enhance Ca uptake, ROS 

scavenging ability, reduce As 

uptake and its transportation from 

roots to shoots. 

Nazir et al.,  

2022a 

2. Hordeum 
vulgare 

L. 

- Cadmium 

(Cd) 
- CaO NPs 

directly added 

in soil 

Pot culture Increase antioxidant enzyme 

activity (APX, CAT,GR, SOD), 

plant biomass, and non-enzymatic 

antioxidants (glutathione, 

ascorbate). Reduce MDA, H2O2 

level and alleviate toxicity induced 

by Cd stress. 

Nazir et al.,  

2022b 

3. Lupinus 

termis L. 

50, 100µM Cadmium 

(Cd) 

0, 20, 60mg/l CaO NPs 

added in a 

medium 

Petri dishes Reduce oxidative stress induced by 

Cadmium stress. Increase 

antioxidant enzyme activity (POD, 

CAT). 

Khalaf et al., 

2022 
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4. Conclusion 

The toxicity of heavy metals is a serious issue since both plants and animals consume them. 

Plant productivity is being hindered by the toxicity of heavy metal stress. It is currently 

unclear that how HMs are absorbed, effluxed, accumulated, translocated, and detoxified in 

plants. According to several findings, it has been examined that the heavy metal toxicity 

induces growth inhibition and oxidative stress in plants. The roles of CaO-NPs in alleviating 

HMs toxicity could be attributed to its enhancement of Ca uptake and ROS scavenging ability 

as well as reduction of HMs uptake and its transportation from roots to shoots in plants. 

Furthermore, the mechanisms and pathways by which heavy metals cause oxidative stress 

should be taken into consideration. According to the findings, CaO-NPs can help to reduce 

the detrimental effects of heavy metals on plants. However, there are still a lot of dark, grey 

regions exists that need to be clarified in order to apply different nanomaterials strategies that 

can be helpful for plant response mechanisms and resistance to HMs stress. 
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